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Antiplane periodic contact problems for an elastic layer with a shear modulus which varies exponentially along its thickness are 
considered. The problems are reduced to an integral equation of the first kind with an irregular, periodic, difference kernel. 
A method which has been described previously [1, 2] is used for the approximate solution of this equation. © 2005 Elsevier Ltd. 
All rights reserved. 

Similar problems for a uniform elastic layer were considered by another method in [3]. 

1. F O R M U L A T I O N  OF THE PROBLEMS 

Suppose an elastic layer (Ixl < ~ ,  Ix l < ~ ,  lyl -< h) is rigidly fastened onto a base y = 0. The shear 
modulus of the layer varies along its depth as given by the relation 

G ( y )  = Go e2~y (1.1) 

A periodic system of strip punches, to which a linear shear force T is applied, is arranged along the 
upper edge of the layer y = h. Antiplane deformation of the layer occurs under the action of these 
punches. The punches are arranged with a period of 2b and the area of contact of each punch with the 
surface of the layer has a length 2a (a < b). The punches are rigidly joined to the surface of the layer 
over their contact areas. 

We shall consider two problems: (1) the punches are successively shifted by the forces T in different 
directions by an amount e, (2) the punches are shifted in one direction by an amount e. We shall call 
the punch which is symmetrically arranged with respect to the system of coordinates a primary punch. 
The directions of the forces T in the case of Problem 1 are shown in Fig. 1. In the case of Problem 2, 
all of the forces are directed in the same direction as the force which is applied to the primary punch. 

We will now introduce notation and initial formulae. The components of the displacement vector 
are denoted by u, a) and w,  where 

u = o = O, w = w ( x , y )  (1.2) 

the shear strains 

~xz = ~W[~X, "~yz = b w / b y  (1.3) 

and the shear stresses 

Xxz = G ( Y ) Y x z ,  "Cyz = G ( y ) T y z  (1.4) 

tPrikl. Mat. Mekh. Vol. 69, No. 2, pp. 315-323, 2005. 
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Fig. 1 

Substituting expressions (1.3) and (1.4) into the equilibrium equation, we obtain the Lam6 equation 

O2w/Ox2 + 21¢Ow/Oy + 32w/Oy2 = 0 (1.5) 

where the quantity ~z occurs in the exponential term of formula (1.1). 
In the case of the primary punch, the boundary conditions on the edges of the layer are the same 

for both problems and have the form 

y = 0 : w = 0  

y = h: w = e, (Ixl < a) ,  Xyz = 0 ~ Ow/Oy = 0 (a < Ixl -< b) 

and, whenx = +b, the boundary conditions are different and have the form 

w = 0 for problem 1, x,z = 0 ---> Ow/3x = 0 for problem 2 

(1.6) 

(1.7) 

(1.8) 

2. R E D U C T I O N  OF THE P R O B L E M S  TO AN I N T E G R A L  EQUATION 

We will now consider the following subsidiary Problems la and 2a, which differ from the corresponding 
Problems 1 and 2 in that the boundary conditions (1.6) and (1.8) are retained while conditions (1.7) 
become 

= = I Ixl -o 
y = h: xy z G(y)  Y [0, a < Ixl - b (2.1) 

For Problems la and 2a, on expanding the functions w(x ,y)  and ~(x) in Fourier series in the interval 
- - b < x < b  

w ( x , y )  = £ wk(y)cos~kX , ~(X) = ~ XkCOS~kX 
k = 0  k = O  

a a 

--a --a 

[Jk = gUk/b; Uk = k - 1 / 2  forproblem la, u k = k for problem 2a; k=  1,2 .. . .  
(2.2) 
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(for Problem la, w0(y) = 0, z0 = 0) and using the method of separation of variables, we solve the subsidiary 
Problems la  and 2a for Eq. (1.5). As a result, we obtain 

o o  

1 
w(x, y) - G-~h ) 2 " c k  Wk(y)cos(~Jkx) 

k-O-  

shzkY 
Wk(Y) = _ ~:shzk h + zkchzk h, Xk = + [3~ 

(2.3) 

Substituting the coefficients "c~ in the form of (2.2) into expression (2.3) and puttingy = h, after some 
reduction we find 

w(x,h)  = 2bG(h "c({) IF, Wt(h)exp[i fJk({-x)ld{ 
- a  k = - ~ ,  

(2.4) 

Note that, when solving the subsidiary problems, all the boundary conditions of the basic Problems 1 
and 2 were satisfied (apart from the first condition of (1.7)). On now satisfying the remaining boundary 
condition using formula (2.4), we arrive at the following integral equation of the first kind with a 
difference kernel in the unknown function for the distribution of the shear contact forces z(x) 

a 

I 'C(~)K[b(~-x)]d~ = gG(h)e (Ixl<a)  
- - a  

(2.5) 

o o  

~h 1 L(~Uk)exp(iuks), [3 = -~- (2.6) ,:(s) = Z u---T- 
k - -  - ~  

vsh4~m 2 + 1) 2 

L(V) = _msh4~m2 + 2 +  4~m2+ v2ch(m2+ 12)' m = ~h (2.7) 

The kernel (2.6) is a periodic function, and, moreover, it can be shown that it is irregular: when s ~ 0, 
it behaves as -ln Is 1. 

3. R E D U C T I O N  OF T H E  I N T E G R A L  E Q U A T I O N  (2.5)  TO A S I N G U L A R  
I N T E G R A L  E Q U A T I O N  

In Eq. (2.5), we will change to dimensionless variables and dimensionless quantities using the formulae 

"~(ax') e na ~'=~-,  x '=  x-, ~p(x')= ~ ,  f = - ,  a = - -  (3.1) 
a a G(h) a b 

As a result, we obtain 

1 

e ( { ) r [ a ( { -  x) la{  = ~ f  

-1 

(Ix[-< 1) (3.2) 

(we shall henceforth omit the primes) Note that, by virtue of formulae (2.6) and (2.7), the integral 
equation (3.2) contains three dimensionless parameters ~, ~ and m where 0 < ~ < rt, 0 < [3 < ~ ,  
0_< ]ml < oo. 

With regard to the function L(v),  defined by formula (2.7), we can conclude that it is odd, continuous 
and does not vanish for all v, 0 < Iv I < oo. Moreover, the following asymptotic relations hold for it 

L(1)) = 1+O(1) -1) (11)[ ----)oo), L(v) = Av+O(1) -3) (v--+O) 
-1 (3.3) 

A = shrnemm 
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By virtue of the properties (3.3) of the function L(v),  it can be represented in the form 

L( v) = thA v + g( v) 

g('O) = O(171) (Ivl g(v) = 0 ( 0  3) (v 0) 
(3.4) 

and, on the half-line e (0, the function L(v)  has a single extremum, a maximum. 
We now consider the series 

0 0  

M(s)  = ~_~ thTuisinuks, ~ = ~A (3.5) 
k = l  

For Problems 1 and 2, we have ([4, formulae 1.441(2), 1.442(2) and 8.146 (10, 12)]) 

1 s +-2k_lSin S = K(e)Fl (u)  Ml(S ) = ~ cosec~-  11 

iF " l M2(s ) = ctg s - 4  y_~ , ~ s i n k s  = K(e)F2(u); q = e -~ (3.6) 
2 L 2 k = l l + q  ] 

dnu cnu K(e)s 
Fl(u ) = , F2(u ) = ~ ;  u = 

snu snu 

where Ml(s) corresponds to Problem I and Mz(s) to Problem 2. The quantity e < 1 is determined from 
the transcendental equation 

~K(J1  - eZ)/K(e) = ~t (3.7) 

where K(e) is a complete elliptic integral of the first kind, and sn u, cn u and dn u are Jacobian elliptic 
functions. 

We now differentiate integral equation (3.2) once with respect to x and, on the basis of relations 
(3.4)-(3.6), we write it in the form 

1 1 

j" (p(~)F[~t (~-  x)]d~ = -o~ J" (p (~ )G, [o t (~ -  x)]d~ 
- I  - I  

tl = n - lK(e)a ,  G, ( s )  = ~ g(~uk)sinuks 
k = l  

(3.8) 

The function F(u) is equal to Fl(u) or Fz(u) and, on the basis of the properties (3.4) of the function 
g(v), it can be shown that the function G,(s)  is bounded when s < 2a. A more detailed investigation 
leads to the conclusion that the function G ,  (s) is continuous when s ¢ 0 and that there is a discontinuity 
in the neighbourhood of s = 0, that is, it behaves as follows: 

G , ( s )  = ---~--sgns (3.9) 

It is natural to complete the definition of the function G,(s)  putting G,(0)  = 0. 
Note that 

F l [ l l (~  - x ) ]  - F !  [kt(~ + x ) ]  = 2snBxcnp.~dnl.tx/A 

F 2 [ ~ t ( ~ -  x ) ]  - F 2 [ l l ( ~  + x ) ]  = 2snl.txcn~xdnp.~/A 

A = sn2~t~ - sn21.tx 
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On the basis of these equalities and taking account of the fact that g < K(e) and the functions cn(K(e)x) 
and dn(K(e)x) decrease monotonically from 1 to 0 as x increases from 0 to 1 [5], we reduce Eq. (3.8) 
to the form: 
for problem 1 

1 1 

bt I qo(~)cnl.t~ d~ = o~ i(p({)G,[o~({_x)]d ~ (3.10) 
sng~ - sngx dngx 

-1  -1 

and for problem 2, 

1 1 

g l  qo({)dnlx{ d[  = ~ Itp({)G,[a({-x)]d{ (3.11) 
sng~ - sngx "~ cngx 

-1 -1  

Taking account once again of the fact that g < K(e) and that the function sn(K(e)x) increases 
monotonically from 0 to 1 as x increases from 0 to 1 [5], we introduce the new variables and notation 

x = sng{, t = sngx, c = sng (3.12) 

and yet another function which is inverse to sn u 

t 

asnx a s n t  !ff dx =---~- ,  x =  , asnt = (3.13) 
g (1 -X2)(1 - e2x  2) 

(the definition of the function snu given in [4, formula 8.144(1)] has been used). 
On the basis of relations (3.12) and (3.13), we reduce Eqs (3.10) and (3.11) to the form 

c c 

f lltJ(X) dx = - I  lltj(x)Hj('c, t) (Itl-<c) T,-t 
- -C - -C 

(3.14) 

where j  = I corresponds to Problem 1,j  = 2 corresponds to Problem 2 and the notation 

dng{ = Iltl(z)' c ~  = Ilt2(x) 

rdtj( , t) rc 

~/l(~, t) = 1 ~/2(~, t) = [-Ii(t, x) 

(3.15) 

has been introduced. 
It is important to note that c < 1 < 1/e and that the root singularities in the denominators of the 

expressions Hi(z, t) lie outside the intervals of definition and integration in (3.14). Hence,/ l j (z,  t) are 
the bounded parts of the kernels of the singular integral equations (3.14) (a singular integral operator 
with a Cauchy kernel occurs on the left-hand side of (3.14)). 

4. A P P R O X I M A T E  S O L U T I O N  OF T H E  S I N G U L A R  I N T E G R A L  
E Q U A T I O N  (3 .14)  

In this section, we will omit the subscript j, since the schemes for the approximate solution of Problems 
1 and 2 are the same. 

Taking account of the properties of the function G.(s), it can be proved [6] that, if a solution of integral 
equation (3.14) exists for fixed values of the parameters o~, 13 and m in a class of functions for which 
the integral 
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c 

INt(x)lPdx (0 < p < 2) 

---c 

(4.1) 

converges, then this solution has the structure 

V ( t )  = ~tJ( t ) (c  2 -  t2) -1/2 (4.2) 

and the function u?(t) is bounded at least when I tl <- c. 
Note that the function ~g(t) is found from the singular integral equation (3.14) apart from the term 

- 1 C ( C  2 _ t2) -1/2 (4.3) 

The constant C is then determined from the supplementary condition, which will be discussed in 
Section 5. 

Next, we use the well-known Multhopp-Kalandiya method [6-8], which we shall briefly describe as 
it applies to the problem being considered. 

We substitute expression (4.2) into Eq. (3.14) and change to the new variables co and 0 according to 
the formulae 

x = ccosol, t = ccos0 (4.4) 

As a result, we obtain 

I f  f~(o)do~ - .$~(o~)H(ccosCo, ccos0)d~,  
cJ cos-- - SoosO 

0 0 

f~(0) = ~ (ccos0 )  

O ~ O ~ n  
(4.5) 

We now construct a Lagrangian interpolation polynomial for the function ~(t)  with respect to the nodes 

t n = ccos0 n, 0 n = n ( 2 n - 1 ) / ( 2 N ) ,  n = 1,2 . . . .  N (4.6) 

which are the zeros of a Chebyshev polynomial of the first kind TN(t/c) [4]. In the special case when 
N = 2r + 1 (r ___ 1), this polynomial has the form [8] 

1 ~ ( O n ) 8  n 1 + 2  cos2/Oncos2lO 8~ = 1, n # r + l  
~ ( e )  ~- r + 1/2 1/2, n = r + 1 (4.7) 

n = l  I=1 / 

Substituting the approximate expression (4.7) for f~(0) into the integral equation (4.5) and making 
use of the relation [4, formula 7.344 (1)] 

cosRo d sinl0 
cos(0-  cos0 ~ = n s-~n-On0' 0 < 0 < n, l = 0, 1 . . . .  (4.8) 

0 

we evaluate the integral on the left-hand side of Eq. (4.5) exactly. For the approximate evaluation of 
the integral on the right-hand side of this equation, we use the Gaussian quadrature formula [7, 8] 

rc N 

~f(al)dco = g 
0 n = l  

(4.9) 

After evaluating the integrals in (4.5), we put 0 = 0~ in the resulting relation and arrive at a system 
of r homogeneous linear algebraic equations in f~(0n) 
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E f~(On)6n )~r(On' Os) + 2 [H(CcOsOn' CCOS0s)  + 

n = l  

+H(-ccosOn, ccosO~)] } = O, s = 1,2 .. . .  r 

r 

Xr(CO, O) = 2 ~ cos2/cosin2lO 
m = l  

(4.10) 

5. SUPPLEMENTARY CONDITION 

In system (4.10), there are r equations but r + 1 unknowns ~2(0,). In order to close the system, it is 
necessary to obtain a further inhomogeneous equation. This can be done in the following way. 

We recall that Eq. (3.8), on the basis of which system (4.10) was obtained, differs by a single operation 
of differentiation from Eq: (3.2). Consequently, the algebraic equation in the quantities f2(%), which 
is required, must be obtained from Eq: (3.2). At the same time, here it is possible to putx equal to any 
value: it is convenient to put x = 0. 

So, from Eq: (3.2) when x = 0, taking relation (3.4) into account, we have 

1 1 

- l  -1 

thT(k- l /2)  t'_ 1) , 1 l + c n g {  
e , ( ~ )  = ~ F r / Y  c o s ( ~ - ~ ) ~  = ~ln l _ c n g ~  

k; 1 (5.1) 
1 t _ ~  1 1 + ring{ 

P 2 ( ~ )  = 2 v+ E coska~ = ~ l n ~ - d n g  ~ 
k = l  

QJ(~) = i g(~ k)cOsuk(I~ 
k = l  

Here, the series for PI(o~{) and P2(~)  are summed using the formulae from [1, 2]. The functions Q:(~{) 
are continuous when I{I < 1, which can be proved on the basis of properties (3.4) of the functions g(v). 

Making substitutions in (5.1) using formulae (3.12), (3.13) and (3.15), after some reduction we obtain 

c c 

Vj( )Lj('Oa'c = - Vj('ONj('Oe'  
--C --C 

Nj(Z) = Rj('C)ISj('C ) ~ t:Trasnx¥] 

Ll('r) = lnlx[, L2(z ) = Ll(e'0; RI(x ) = (1--'~2) -1/2, R2(x) = Rl(ex ) 

(5.2) 

Sl(x) = (ffl - x  2-  1)INN + ln(ffl _ 2 +  1), S2(z ) = Sl(ez ) 

Now, substituting expression (4.2) into (5.2) and changing to the new variables and notation as given 
by formulae (4.4) and (4.5), we rewrite equality (5.2) in the form 

- I  f~ j( co ) L j( c cos o~ ) dco 
0 

=  aj(o )Nj(ccoso )eo  (5.3) 
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Table 1 

Problem 1 Problem 2 

~=2 p=2 

rq9 
2g/9 
g/3 

4g/9 

n/9 
2~/9 
n/3 

4nl9 

1.870 
2.738 
3.567 
4.394 

0.656 
0.812 
0.963 

1.131 

4 I 

1.408 
1.933 
2.419 
2.912 

0.720 
0.888 
1.049 
1.228 

m =- -1  

1.194 
1.585 
1.947 
2.319 

m = l  
0.838 
1.051 
1.252 
1.470 

1,866 
2.728 
3,543 
4,344 

0.560 
0.663 
0.750 
0.826 

4 8 

1.342 
1.804 
2.202 
2.567 

0.371 
0.408 
0.434 
0.455 

0.942 
1.164 
1.334 
1.477 

0.218 
0.230 
0.237 
0,242 

Using the relation [3, 9] 

_icos2lo)lnlccoso)ldo~ = IrOn(2/c), l =  0 
[n(-1)ll(2l), l#0 

o 

(5.4) 

we substitute expression (4.7) into the left-hand side of relation (5.3) and evaluate the integral on the 
left-hand side of (5.3) exactly. For the approximate evaluation of the integral on the right-hand side, 
we again make use of the quadrature formula (4.9). As a result, we find a further equation in Q(0n) 

r r ] 
Z nJ (On)~n lj + Z t- l)  ? +NJ (ccOsOn) 

n=l /=1 

c l 2 /1(!)  = ln2, /2(!)  = l(e'Tc ) 

= ( r+  l/2)B f 

(5.5) 

which supplements system (4.10). 

6. D E T E R M I N A T I O N  OF T H E  R E L A T I O N  B E T W E E N  T H E  S H E A R  
F O R C E  AND T H E  M A G N I T U D E  OF T H E  D I S P L A C E M E N T  OF 

T H E  P U N C H  

Note that each punch must be in equilibrium under the action of the shear force T on its upper edge 
and the contact shear stress on its lower edge. This equilibrium condition for the primary punch has 
the form 

a 

(6.1) 
--12 

In the integrand of formula (6.1), we now make the following transition 

x(~) --+ ~p(~') --+ ~g(x) -+ ~I'(x) ~ ~(o) )  

and then substitute Q(m) in the form of (4.7) into it. As a result, we obtain 

r*, [(0j i (_1 ,Zcos2/0j(2j 1 T _ 2 1~ D.j(O,,)cS,, J )(c) + 2 )(c) 
G(h)a g(r  + 1 /2 )  = ] ; = 1 

~/2 (6.2) 

J~'l)(C) = I cos2/a)2 2 ao.)," J (~ ) ( c )  -. J(21l)(Ce), 1 -~ 0 , 1 ,  . . .  

o J 1 -  c sin co 
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All the integrals J~) (c) can be expressed in terms of complete elliptic integrals of the first kind K(c) 
and the second kind E(c). The formulae for the first four integrals are 

J(ol)(c) = K(c), J~l)(c) = [ ( -  2 + c2)K(c) + 2E(c)]c -2 

J(41)(c) = [(16 - 16c 2 + 3 c 4 ) K ( c )  + ( -  16 + 8c2)E(c ) ] (3c4)  -1 

J~l)(c) = [ ( -  256 + 384c 2 -  158c 4 + 15c6)K(c) + 

+ (256 - 256c 2 + 46c4)E(c)](15c4) -1 

After solving system (4.10), (5.5) for f2(0n), an approximate relation between the dimensionless shear 
force N = T/(G(h)a) and the dimensionless magnitude of the displacement of the punchf  = e/a can 
be found using formula (6.2). 

Values of N/ffor Problems 1 and 2 when m = -1 and m = 1 and for different values of t~ and [3 are 
presented in Table 1. 

This research was supported financially by the Russian Foundation for Basic Research (05-01-0002), 
the Russian Foundation for Basic Research and Administration of the Krasnodar Region (03-01-96551) 
and the Russian Ministry of Education (UR. 04.02.527). 

R E F E R E N C E S  

1. ALEKSANDROV, V. M. and STUPINA, T. M., An integral equation that arises in periodic problems of mechanics with mixed 
boundary conditions. Vestn. MGU. Ser. 1. Mathematics, Mechanics, 1996, 5, 49-55. 

2. ALEKSANDROV, V. M., The solution of the integral equation that arises in periodic problems with mixed boundary conditions. 
Prikl. Mat. Mekh., 1997, 61, 5, 838-844. 

3. ALEKSANDROV, V. M. and KOVALENKO, Ye. V., Periodic contact problems for an elastic strip. Izv. Akad. NaukArmSSR. 
Mekhanika, 1977, 30, 4, 18-33. 

4. GRADSHTEIN, I. S. and RYZHIK, I. M., Tables of Integrals, Sums, Series and Products, Fizmatgiz, Moscow, 1963. 
5. JAHNKE, E., EMDE, E and LOSCH,. E, Tables of Higher Functions. McGraw-Hill, New York, 1960. 
6. ALEKSANDROV, V. M. and KOVALENKO, Ye. V.., Problems of Continuum Mechanics with Mixed Boundary Conditions. 

Nauka, Moscow, 1986. 
7. KALANDIYA, A. I., Mathematical Methods of Two-Dimensional Elasticity. Nauka, Moscow, 1973. 
8. ALEKSANDROV, V. M. and ROMALIS, B. L., Contact Problems in Machine Construction. Mashinostroyeniye, Moscow, 1986. 
9. POPOV, G. Ya., The Concentration of Elastic Stresses near Punches, Cuts, Fine Inclusions and Reinforcements. Nauka, Moscow, 

1982. 

Translated by E.L.S. 


